• 純国産ETL:データ連携ツールのWaha! Transformer > 
  • トピック > 
  • 情報システム部門の本質的な役割:労働生産性向上への基本戦略は“機械化”と“自動化”
  • コストセンターからの脱却を目指すCIO・ITマネージャー必見!

    情報システム部門の本質的な役割:労働生産性向上への基本戦略は“機械化”と“自動化”

     
    すべての資料をまとめてダウンロード
    • LINEで送る
    • このエントリーをはてなブックマークに追加
    情報システム部門の本質的な役割:労働生産性向上への基本戦略は“機械化”と“自動化”
    情報システム部門の本質的な役割:労働生産性向上への基本戦略は“機械化”と“自動化”

    ※本トピックは、withコロナ収束間近と言われる2022年1月に公開しました。

    当サイト恒例の質問からで恐縮です。
    皆さんが所属されている組織では、withコロナ真只中にあった2020年度の労働生産性は、前期比で向上していたでしょうか?あるいは低下していたでしょうか?

    あくまでも参考として、製造・小売・銀行各業界の著名企業について、公開されている有価証券報告書に掲載されている営業収益と従業員数をもとに比較してみましょう。

    御社の労働生産性は?
    御社の労働生産性は?

    もう一つ、筆者が過去職で、BPO:Business Process Outsourcing(ビジネス・プロセス・アウトソーシング)サービスベンダーに在籍していた時代のモデルケースをご紹介します。

    アウトソーシングサービスを受託する際には、最初の調査・設計フェーズで対象業務(プログラムと呼びました)のアセスメント:現状分析および定量・定性評価を行います。
    顧客(クライアントと呼びます)とプログラムのビジネスゴールを定義・共有・合意した上で、その実現に向けたシナリオ ~ オペレーションフロー ~ スクリプトなどのマニュアル類を設計・ドキュメント化しますが、ビジネスゴールの達成を定量評価できるように、プログラム全体の KGI:Key Goal Indicator(重要目標達成指標)および付随するオペレーション分野ごとの  KPI:Key Performance Indicators(重要業績評価指標)も算出します。

    KGIについては、対象プログラムがプロフィットセンターであれば収益額や率を設定すればよいだけですが、コストセンターの場合はクライアント自身が KGI を持っていないことがほとんどであり、そこで提案するのが労働生産性でした。

    アウトソーシング≒人的作業を外部委託する以上、業績向上にポジティブなインパクトを及ぼす必要があるはずで、クライアント社内で人事異動があるプロパー人材だけでは実現できないであろう成果を提供できなければ、BPOベンダーとしての存在意義を問われてしまうからに他なりません。

    調査・設計フェーズから対象分野の専門家:ディレクター(PM・SE的な役割)がアサインされ、チームとしてプログラム運営にあたりますので、ただ惰性で作業を流していくのではなく、自社に蓄積されているノウハウがてんこ盛りになったサービスメニューやツール類を駆使して、人的作業の標準化~機械化~自動化をゴリゴリ推進していくわけです。

    そうすると、早ければ2年から3年でクライアントへのノウハウ移転まで果たせますから、体制が作れるクライアントは内製化への移行を希望されBPO契約自体は打切りになります。ただ、さらにその数年後にはギブアップされてBPO復活というケースも少なくありませんでした。

    製造業におけるファブレス経営しかり、選択と集中を進めれば進めるほど「餅は餅屋」であったり「適所適材(適材適所ではない)」の必要性が明らかになってくることが理由ですが、アウトソーシングをうまく機能させるには、労働生産性のように KGI と呼ぶに相応しいゴール設定が肝要と言えるでしょう。

    本トピックは、当サイトの人気コンテンツ『RPAを導入しても成果が出せない組織がはき違えている「生産性」というマジックワード』および『CIO・情報システム部門のミッションに関する考察』それぞれの続編としつつ、2021年12月に相次いで報道された生産性関連の国際比較を受けて、当サイトやセミナー等で取り上げている「労働生産性」向上に貢献するための「第四次産業革命」へのアプローチなどから深掘りしてみたいと思います。

    ※当サイトでは「労働生産性=付加価値生産性」とし、「従業員個々人レベルの作業効率:ライフハック」とは別のものと位置付けています。 ※付加価値は「粗利」としていますが、便宜的に売上・収入で代替する場合があります。

    紙書類・SaaS 社外情報活用へ!データ化・自動化の進め方 ユニリタ × アライズイノベーション共催 ~ AI-OCR × RPA × ETLセミナー ~

    紙書類・SaaS 社外情報活用へ!データ化・自動化の進め方
    ユニリタ × アライズイノベーション共催 ~ AI-OCR × RPA × ETLセミナー ~

    本セミナーでは、PDFをはじめとする帳票のデータ化を手始めに、SaaSに代表されるように増え続ける一方の業務アプリケーションとのデータ連携まで、ビジネスプロセスとデータフローを切り離さずに全体最適でデザインしていく上でご考慮いただきたい重点ポイントなどを解説いたします。 お申し込みで見逃し・アーカイブ配信配信も可能

    目次

    情報システム部門に期待されていたのは労働生産性:labor productivity 向上への貢献

    日本の産業界では60年代の銀行オンラインシステムを皮切りとしてメインフレームやオフコンをはじめとするコンピューターの導入:IT化が徐々に広まり、電算システム部と呼ばれる本社部門が新設されていきましたが、当時の経営層がITに期待していたのは「労働生産性向上のリード役」だったのではないでしょうか?

    情報システム部門に期待されていたのは労働生産性:labor productivity 向上への貢献
    情報システム部門に期待されていたのは労働生産性:labor productivity 向上への貢献

    その期待は50年を経た現在でも変わることはなく、人口減少社会を迎えたことで尚更強まっているはずです。

    ところがどっこい、2021年の年の瀬に相次いで報道された国際比較ランキングは惨憺たる結果となってしまいました。

    日本の労働生産性、1970年以降で過去最低ランク――労働生産性の国際比較2021:EnterpriseZine(エンタープライズジン) 2021-12-20

     2020年の日本の一人当たり労働生産性(就業者一人当たり付加価値)は、78,655ドル(809万円)。ポーランド(79,418ドル/817万円)やエストニア(76,882ドル/791万円)といった東欧・バルト諸国と同水準だった。西欧諸国と比較すると、労働生産性水準が比較的低い英国(94,763ドル/974万円)やスペイン(94,552ドル/972万円)にも水をあけられているという。また、前年から実質ベースで3.9%落ち込んだこともあり、OECD加盟38カ国でみると28位(2019年は26位)と、1970年以降最も低い順位だとしている。

    1人当たりGDP、日本はOECD38カ国中19位: 日本経済新聞 2021-12-25

    20年度の実質GDPは4.5%減と、リーマン・ショックがあった08年度(3.6%減)を上回る落ち込みとなった。新型コロナウイルスの感染拡大で個人消費、設備投資、輸出がいずれも落ち込んだ。名目GDPは3.9%減だった。

    国際比較はどうしてもドル・ベースになってしまうので、日本政府・日本銀行が円安誘導してきた影響を大きく受けてしまっていることは確かでしょう。とは言え、ドイツや韓国などは旧マルク高・ウォン高でも競争力のある製品・サービス分野を強化して労働生産性を向上させてきているわけですから、外国為替などの金融テクニックではなく国際競争力に焦点を絞って議論を深めたいものです。

    第四次産業革命が示した「知的労働の機械化・自動化」にフォーカスしてみる

    蒸気機関の発明による産業革命が歴史の教科書に載っていたことを記憶されている方は少なくないはずですが、第一次から第四次まで変遷をたどっていることをご存知の方は、どれぐらいいらっしゃるでしょうか?

    産業革命の変遷

      焦点 主な影響範囲 主たる資源
    第一次産業革命 軽工業の機械化 繊維 石炭/蒸気機関
    第二次産業革命 重工業の機械化 鉄鋼、化学 石油
    第三次産業革命 組み立て産業の機械化・自動化 自動車、電機 電力
    第四次産業革命 知的労働の機械化・自動化 全産業・公的機関 半導体、AI、RPA
    第五次産業革命? スマート?エコ?バイオ? 全人類? 地球由来?

    第一次については米国の綿花農場や日本の富岡製糸工場が思い浮かびますし、第二次から第三次の間にあった大量生産から多品種少量生産への変遷については、日本の高度成長~バブル期と捉えるとわかりやすいですね。

    第四次産業革命が示した「知的労働の機械化・自動化」にフォーカスしてみる
    第四次産業革命が示した「知的労働の機械化・自動化」にフォーカスしてみる

    ただ、前述した「円安誘導」は第三次産業革命までの政策のはずであり、「組み立て後の完成品は輸出しているが原料や資材の多くは輸入している」ようにサプライチェーンがグローバル化した現在においては、実際に経済効果があるのかないのか微妙なところは否めないのでしょう。

    合わせて、今ではガラパゴス文化と言われる新卒一括採用や年功序列型賃金は、農山漁村の労働力を都市部の建設現場や生産ラインに移動させる第二次・第三次産業革命時代に最適化された労働力の供給施策だったはずですから、高度成長を終えて成熟期に入った日本市場にはなじまなくなっていることも確かでしょう。

    さらに、withコロナの間に顕在化した「半導体不足」は、せっかくの円安誘導で擁護したはずの自動車・電機分野の生産ラインを止めてしまうほどのインパクトがあったことを見ても、「デジタル敗戦」どころか産業革命レベルで時代遅れになってしまった日本の現状は残念と言わざるを得ないのでしょう。

    そんな状況を見越したわけではないのですが、2021年10月に開催した年次カンファレンス「Waha! Day 2021」の主催者メッセージを抜粋して紹介いたします。

    データ活用人材の祭典「Waha! Day 2021」 主催者メッセージ

    人口減少社会における労働生産性の向上が国家課題となってはや十数年、「女性活躍」や「働き方改革」、「副業解禁」といった政策が打ち出されてはいるものの、肝心なビジネス現場に変革が起こせない限り、国民一人あたりGDPが世界25位あたりをウロウロしている状況は、一向に改善されることはないのではないでしょうか。

    私たちはそのような問題意識から、今年のイベントテーマを設定しました。

    ~データ連携の先にあるイノベーションの“タネ” ~

    時間が許す限り働いて・稼いでいた時代は終わり、限りある時間の中で、最適解をアウトプットするために工夫を繰り返す。 そんな時代のど真ん中を、データ処理の標準化・機械化・自動化によるデータ活用、データドリブン経営という切り口で、ご一緒させていただきたいと考えております。
    【見逃し配信受付中】データ活用人材の祭典「Waha! Day 2021」
    【見逃し配信受付中】データ活用人材の祭典「Waha! Day 2021」

    ここにも登場する「標準化~機械化~自動化」は、産業革命を進化させてきた人類が編み出した知恵の結晶であり、第四次産業革命の真っただ中にある現代でも、その対象を生産ラインから知的労働:デスクワークに拡張させるだけで、そのまま通用するものと理解しています。

    例えばトヨタ生産方式:カイゼンは、生産ラインとその周辺の作業標準を徹底的に磨き上げ、臨機応変に改善・最適化し続けることで、企業文化・風土にまで高められたものと言えるでしょう。
    Google の検索エンジンは、ユーザーの検索意図の近似値を提供するために標準化・機械化されたアルゴリズムを磨き続け、クローリング~インデクシング~クエリーインターフェースといった工程の機械化:ボット化を含めて、検索体験の効果測定と改善プロセスまでをも自動化させたことでイノベーションを起こしました。

    Windows 95 の発売が契機と言われるITバブル・IT革命は、鉄鋼や自動車産業の衰退に代表されるような米国経済復活の起爆剤になり、産業間の人材シフトなどと相まって、第四次産業革命への移行が自然発生的に進んだように見えます。 一方の我が国は、パソコン減税のように部分最適な政策はあったものの、まるで第三次産業革命期に留まろうとするかのような「モノづくり」神話が吹聴され、そのまま円安誘導を続けてきました。

    その25年後の現在、労働生産性や一人あたりGDPでは先進国というカテゴリーから脱落の危機にあり、極東アジアでも韓国や台湾にその地位が取って代わられる日もそう遠くないと言われるような状況に陥りつつあります。

    そんな長期低落傾向を脱するために、あるいは時代遅れの工業化社会から高度情報化社会への進化を果たすために、DX:デジタルトランスフォーメーションという戦術を選ぶことは、上位にある成長戦略次第であるかと思います。

    ただ、上位の戦略が描けないままに名前だけ「DX」と付けてみても、肝心な Transformation:事業変革が起こせなければ、ITによくある「屍の山」が積み上がるだけになってしまう恐れがあります。

    ならば、かつての「ペーパーレス」に代表されるような情報システム部門の得意分野であるはずの「機械化・自動化」に焦点を絞って第四次産業革命に追いつくと共に、「いざ!DX」となった場合の事前準備としても、臨機応変かつ柔軟に対応できるのではないでしょうか?

    AI・RPA導入を目的化せず「知的労働の機械化・自動化」を愚直に推進する

    AI・RPA導入を目的化せず「知的労働の機械化・自動化」を愚直に推進する
    AI・RPA導入を目的化せず「知的労働の機械化・自動化」を愚直に推進する

    第四次産業革命の主な資源として AI や RPA を記載しましたが、それ以前の電力や石油などの時代と異なるのは、それらのコトバがバズワードとなってしまっていることでしょうか。

    その結果、
    「ウチもAIを使って何ができるか考えてくれ」
    「RPAを導入すれば事務スタッフを削減できるそうじゃないか」
    「そうすれば、ウチもDXやってることになるんじゃないのか」
    といった天の声やツルの一声が会議室で飛び交う様子は、多くの組織で垣間見られる日常風景かと思います。

    そんな声が身近で聞こえてきたとしても、責任ある社会人の私たちは「面従腹背」してはいけません。 AI や RPA の得意なこと・不得意なことと自分たちの事業へのマッチング度合いを整理し、「知的労働の機械化・自動化」という基本戦略のもとビジネスプロセスをデザインし直していく中で、「是々非々」で積極推進していくことを声の主に伝えていけばよいのではないでしょうか?

    幸いにも、withコロナによってテレワーク:在宅勤務(work from home)が一般化したことで、ビジネスコミュニケーションにおける機械化・オンライン化のハードルは一気に低くなりましたし、実際に手を動かし汗をかいた情報システム部門の声も通りやすくなっているはずです。

    COVID-19という未曽有の危機の中で得られたこのような機会を、労働生産性向上への貢献を目指す上での千載一遇のチャンスと捉えれば、この1年は機械化・自動化の対象領域を洗い出し、優先順位を含めた実行計画を策定してみるのはいかがでしょう?

    その第一歩としては、多くの企業に共通するであろう下図のようなビジネスプロセスの中で、すでに標準化されているデスクトップ上の定型作業を洗い出してみるのがよいのではないでしょうか。

    ビジネスプロセスの中で、すでに標準化されているデスクトップ上の定型作業を洗い出してみる
    ビジネスプロセスの中で、すでに標準化されているデスクトップ上の定型作業を洗い出してみる

    上流(と言いながら顧客からは遠い)調査・企画工程は、知的労働の総本山と言えそうな非定型作業の塊でありそうなことから、そのように標準化の難易度が高そうな領域は機械化・自動化の最後の砦として、リストの一番下に記録だけしておきます。

    一方で、製造および販売・保守工程(下流ほど顧客に近いので「DX」っぽくもある)については、例えばExcel帳票の数値だけ更新するような日次~月次の定型デスクトップ作業が、組織内外のあらゆるビジネス現場で発生しているのではないでしょうか。

    特に、受発注業務や立替え経費の精算における伝票処理などは、ほぼ確実に標準化されているはずですし、付加価値:業績に直接インパクトする工程でもあることから、真っ先に取り組みたい分野でもあります。

    紙ベースの伝票処理で活躍する AI-OCR や、その後に受発注データを自動更新してくれる RPA の活用方法については、開催後の見逃し・アーカイブ配信も可能な無料セミナーがありますので、ぜひご参考ください。

    紙書類・SaaS 社外情報活用へ!データ化・自動化の進め方 ユニリタ × アライズイノベーション共催 ~ AI-OCR × RPA × ETLセミナー ~

    紙書類・SaaS 社外情報活用へ!データ化・自動化の進め方
    ユニリタ × アライズイノベーション共催 ~ AI-OCR × RPA × ETLセミナー ~

    本セミナーでは、PDFをはじめとする帳票のデータ化を手始めに、SaaSに代表されるように増え続ける一方の業務アプリケーションとのデータ連携まで、ビジネスプロセスとデータフローを切り離さずに全体最適でデザインしていく上でご考慮いただきたい重点ポイントなどを解説いたします。 お申し込みで見逃し・アーカイブ配信配信も可能

    ここまでお読みいただき、ありがとうございました。

    経済産業省が2018年に公開した「DXレポート」は、2020年の「DXレポート2」、2021年の「DXレポート2.1」と続き、2022年には「デジタル産業への変革に向けた研究会」へと引き継がれているようです。

    デジタル:インターネット・テクノロジーの活用と解釈してみれば、経済産業省所管のIT業界と総務省所管のICT業界との境界にある「インターネット業界」を取り込もうとするかのようなネーミングには一抹の不安はあるかと思います。

    【再掲】わりと知らないIT産業マップ
    【再掲】わりと知らないIT産業マップ

    そこはポジティブに捉えて、労働生産性や一人あたりGDPの向上による税収増という成果物が得られるなら、せっかく立ち上がったデジタル庁などとも歩調を合わせて、官民問わず前向きに取り組んでみたいものだと思い新たにした次第です。

    【提言】労働生産性向上の目安は1.5倍でいかがでしょう?

    長文にお付き合いいただいた御礼まで、公開されたデータのチャートを掲載しておきます。

    公益財団法人日本生産性本部「労働生産性の国際比較2021」PDFを筆者集計
    公益財団法人日本生産性本部「労働生産性の国際比較2021」PDFを筆者集計

    私たちの当面の目標となりそうな2020年のランキング10位:スウェーデンは78.9ドルでしたから、49.5ドルの日本と比べて1.5倍強の「稼ぐ力」があると見ることができます。

    まずはトップ10入りを目指すとして、所属組織の労働生産性を1.5倍に高める方策を考えてみようではありませんか。

    そのためにできることは、人員削減は無理だとしても社員一人ひとりの年間総労働時間を減らすと共に、減った労働時間の中で得られる年間収益を1.5倍に近づける製品・サービス開発に取り組むことでしょう。

    その間にもし、1ドル・115円を超えてしまったドル円相場が110円や100円の円高に振れてくれたら、その差額は国際比較する時の円高ボーナスとなって還元されるはずですから、トップ10どころかトップ3入りも夢ではないはずです。

    最後に、本トピックを草稿する中で参考にした内閣府の文書がありますので、参考にしたニュースなどと合わせて紹介させていただきます。

    白書等(経済財政白書、世界経済の潮流等) > 日本経済2016-2017 > 目次 > 第2章 > 第1節 第4次産業革命のインパクト

    こうした第4次産業革命の進展は、生産、販売、消費といった経済活動に加え、健康、医療、公共サービス等の幅広い分野や、人々の働き方、ライフスタイルにも影響を与えると考えられる。

    超スマート社会では、企業は様々な情報をデータ化して管理することで、生産効率の改善、需要予測の精緻化、取引相手を含むサプライ・チェーンの効率的運用を図ることができることに加え、データの解析を利用した新たなサービスの提供、AIを活用した事務の効率化や新たなサービス提供などが実現できる。
    データ活用ツールの違い・比較資料のダウンロード

    データ活用ツールの違い・比較資料がダウンロードできます。

    ETL ツールと周辺ツール3種(EAI / BI・DWH / RPA )との比較表およびツールごとの解説をまとめたホワイトペーパーをダウンロードしていただけます。

    紙書類・SaaS 社外情報活用へ!データ化・自動化の進め方 ユニリタ × アライズイノベーション共催 ~ AI-OCR × RPA × ETLセミナー ~

    紙書類・SaaS 社外情報活用へ!データ化・自動化の進め方
    ユニリタ × アライズイノベーション共催 ~ AI-OCR × RPA × ETLセミナー ~

    本セミナーでは、PDFをはじめとする帳票のデータ化を手始めに、SaaSに代表されるように増え続ける一方の業務アプリケーションとのデータ連携まで、ビジネスプロセスとデータフローを切り離さずに全体最適でデザインしていく上でご考慮いただきたい重点ポイントなどを解説いたします。 お申し込みで見逃し・アーカイブ配信配信も可能

    参考ニュース

    日本は「先進国」から脱落目前、2022年は歯止めの正念場 | 野口悠紀雄 新しい経済成長の経路を探る | ダイヤモンド・オンライン

     1970年以降、半世紀の期間、日本は先進国の位置にあった。しかし20年ほど前からその位置が低下し続けている。  日本はOECDの平均レベルに逆戻りし、そして、いままさに、このレベルを下回ろうとしている。つまり、先進国としての地位を失おうとしているのだ。

    生産性が低いのも納得…デキる人材をダメにする「日本の人事」 | 富裕層向け資産防衛メディア | 幻冬舎ゴールドオンライン

    日本企業の多くはハイパフォーマーとアベレージパフォーマーの仕事が同じですから、ハイパフォーマーほど楽に仕事ができてしまい、成長につながりません。ただし日本でも外資系企業は本国と同様の人材開発が行われる傾向がありますし、ベンチャー企業もハイパフォーマー重視の育成や採用を行うようになってきてはいます。

    G7最下位の日本の労働生産性……停滞の根因「少なすぎるIT投資」の大問題とは |ビジネス+IT

     図は日米仏におけるIT投資水準(ソフトウェアとハードウェアの総額)の推移を比較したものである(自国通貨ベース)。日本は80年代までは米仏と同じペースでIT投資を拡大してきたが、90年代以降、横ばいとなり、ほとんど投資額を増やしていない。一方、米国やフランスは同じペースで投資を拡大しており、1995年との比較では約3.5倍になった。
     97年に行われたOECDの調査によると、日本におけるホワイトカラー100人あたりのパソコン保有台数は24台と、米国の5分の1、ドイツの3分の1以下と、すでに圧倒的な差を付けられている。

    安易な「ドイツ礼賛」は危険!“労働生産性が低い”日本はヨーロッパに学ぶべきか | bizSPA!フレッシュ

    貧乏な国では、どれだけ優秀な人物でも、1時間あたりで大きく稼げません。けれども、裕福な国では、どれだけ無能な人でも、1時間あたりたくさん稼ぐことができます。例えば、今、ヨーロッパではラーメン屋のバイトで1時間あたり2000~3000円稼ぐことができます
    一方、日本で同じチェーンのラーメン屋では、1時間あたり1000円弱しか稼げません。しかし、それは“欧米人のほうが日本人よりも優秀”ということではないです。ただ単に、“ヨーロッパのほうがラーメンの単価が高い”ということを反映しているに過ぎません。日本は長期間のデフレに陥っているため、労働生産性が低いだけです。

    デジタル敗戦した日本の未来。RPAの誤解、DXの誤解は経営層の問題か | LIMO | くらしとお金の経済メディア

     RPAという概念を生み出した英Blue Prism(ブルー・プリズム)社の日本法人が2017年に設立。同社の資料をみると、日本のRPAは誤解があるとしています。
     「日本では、働き方改革、個人の生産性向上といった文脈で業務自動化のコンセプトが紹介された経緯があり、RPAは便利ツールとしての側面が強調されてきた」という指摘です。
     総務省では、RPAの導入・発展イメージをクラス1から3まで「定型業務の自動化」「一部非定型業務の自動化」「高度な自律化」と定義していますが、日本の多くの企業は「クラス0=デスクトップ上作業の自動化」にとどまっていると同社は分析しています。

    日本の金融機関がグーグルのシステム運用に熱視線、みずほ銀行こそ「SRE」が必要だ | 日経クロステック(xTECH)

     SREとはSite Reliability Engineeringの略称で、グーグルが提唱したシステムの安定稼働を実現する方法論である。日本ではシステム運用というと、決められた手順に従ってシステムを操作する文字通りの「オペレーション」だと認識されがちだが、SREはそうではない。システム運用にまつわる様々なプロセスをソフトウエアによって自動化するだけでなく、それを継続的に改善し続けることでシステムの安定稼働を目指す。SREにおいては運用担当者は単なるオペレーターではなく、ソフトウエアを改善し続けるエンジニアである。

    日本のビッグマックはタイより安い…日本が急激に貧しくなったのは「アベノミクス」の責任である 安易な利益増と引き換えに、経済的地位は急落した | PRESIDENT Online(プレジデントオンライン)

    2021年6月におけるいくつかの国・地域のビッグマック指数を見ると、つぎのとおりだ(カッコ内がその国の指数)。 指数がプラスの国として、スイス(24.7)、ノルウェー(11.5)、スウェーデン(9.6)などがある。これらは、アメリカ人から見ても、物価が高いと感じる国だ。 マイナスでも日本より指数が大きい国・地域として、韓国(△29.2)、アルゼンチン(△30.2)、タイ(△31.0)、パキスタン(△36.3)などがある。 これらの国では、アメリカ人は物価が安いと感じるが、日本人は高いと感じる。 ビッグマック指数の順に世界各国を並べてみると、調査対象57カ国・地域中で日本は31位だ。 ヨーロッパ諸国をはじめとして、30の国が日本より上位にくる。サウジアラビア(26位)も日本より上位。いまや日本人は、世界の多くの国に行ったときに、物価が高いと感じる。

    「第5次産業革命」をわかりやすく解説、ドイツ・米国・中国・日本の最新動向とは |ビジネス+IT

    現在、第4次産業革命に続く「第5次産業革命」の議論が盛んに行われており、各国は第4次産業革命の次の姿、つまりNext Industry 4.0に関する「コンセプト」を続々と発表している。
    たとえば、ドイツはIndustry4.0に続く方針として「2030 Vision for Industrie 4.0」を発表したほか、欧州委員会は「サステナビリティ」「人間中心(ヒューマンセントリック)」「レジリエンス」をコンセプトに持続可能な産業のあり方を目指す「Industry 5.0」を提唱している。
    日本でも経済発展と社会的課題の解決の両立を目指す「Society5.0」が打ち出されるなど、世界の第5次産業革命に向けた動きが加速しているのだ。ここでは、各国の第5次産業革命の最新動向を解説する。

    「年2回の人事評価なんてとんでもない」エディー・ジョーンズが分析する、日本人の生産性が上がらない理由 | PRESIDENT Online(プレジデントオンライン)

    私がヘッドコーチに就任以前まで、『日本人は体重も軽いし、スクラムを押せるわけがない』という固定観念に囚われていたんです。そのほかにも、『日本は農耕民族なので、狩猟民族には勝てない』と総括する人もいましたよ(笑)。いったい、その言説のどこに科学的根拠があるんでしょうか? ありません。思い込みは生産性を鈍らせる元凶です。リーダーはそれを取り払う根拠を提示し、メンバーに自信を与える必要があります。
    • LINEで送る
    • このエントリーをはてなブックマークに追加

    関連コンテンツ

    社内のデータ活用でお悩みの方はお気軽にご相談ください。

    お役立ち情報を資料にまとめました。
    お役立ち資料ダウンロード
    ご不明点などお気軽にご相談ください。
    お問い合わせ
    30日間、無料で体験いただけます。
    無料体験版

    注目トピック

    ETLとは、デジタルトランスフォーメーションの第一歩となる、データの整理・整頓ツールです

    ETLとは、デジタルトランスフォーメーションの第一歩となる、データの整理・整頓ツールです

    ETLツールとは、「組織の内外に散在するデジタルデータを抽出・収集(Extract)」し、「用途に応じて変換・加工(Transform)を行った上」で、「その先にある格納先に有用な情報として配信・送出(Load)してくれる」ITプロダクトのカテゴリーの一つです。

    データドリブン経営やDX推進の壁を突破する「データ活用」のススメ型

    データドリブン経営やDX推進の壁を突破する「データ活用」のススメ型

    DXやデータドリブン経営にいざ取り組むとしても、どこから手をつけたらよいのかわからないというお悩みを聞くことが少なくありません。その第一歩を「データ活用」とした場合に生じるお悩みとその解決策について考察してみました。

    データ連携の自動化で正しいデータをスムーズに有効活用

    データ連携の自動化で正しいデータをスムーズに有効活用

    データ活用でこのようなご不満をお持ちではありませんか?
    ✅ 異なるシステムのデータをうまく連携できない
    ✅ データ活用に必要な手作業での前処理・データ加工が膨大にある
    ✅ 一部のITリテラシーの高いメンバーに負荷が集中してしまう

    Waha! Transformerなら、データ活用までに必要な変換・加工作業を大幅削減できます!

    お役立ち資料

    脱Excelではなく、Excelを生かして業務効率を上げる方法

    脱Excelではなく、
    Excelを生かして
    業務効率を上げる方法

    本ホワイトペーパーでは、数多くの企業が抱えるExcel業務効率化の悩みに対し、3つのステップで最適な回答を示すことで、できる限り分かりやすく解説・整理できればと思います。

    導入実績多数!数字で証明する、ETL/EAI製品をリプレイスした効果!

    海外製ETL/EAIの
    EOS/EOL対策

    2000年代初頭よりデータ連携基盤として多くの企業に導入されたETL/EAI製品。本資料では、お客様がどこに課題を抱いていて、ユニリタのソリューションを選択することでどのような効果があったのかを簡潔明瞭にお伝えいたします。

    データ活用ツールの違い・比較

    データ活用ツールの違い・比較

    ETL ツール「Waha! Transformer」の導入に際して、「データ活用」という観点から一緒に検討されることの多いETL ツールと周辺ツール3種(EAI / BI・DWH / RPA)を比較・整理しました。